# Mandelbrot

Perhaps the best known fractal of all: the Mandelbrot set.

Since I was already working on Python code that would render an image given a function (for a future post), I figured that I might as well render fractals with it.

Perhaps the best known fractal of all: the Mandelbrot set.

Since I was already working on Python code that would render an image given a function (for a future post), I figured that I might as well render fractals with it.

Quick post today. Let’s implement Tupper's self-referential formula in Racket!

\frac{1}{2} < \left \lfloor mod \left ( \left \lfloor \frac{y}{17} 2^{-17 \lfloor x \rfloor - mod(\lfloor y \rfloor, 2)} \right \rfloor, 2 \right ) \right \rfloor

`(tupper 960939379918958884971672962127852754715004339660129306651505519271702802395266424689642842174350718121267153782770623355993237280874144307891325963941337723487857735749823926629715517173716995165232890538221612403238855866184013235585136048828693337902491454229288667081096184496091705183454067827731551705405381627380967602565625016981482083418783163849115590225610003652351370343874461848378737238198224849863465033159410054974700593138339226497249461751545728366702369745461014655997933798537483143786841806593422227898388722980000748404719)`

That’s the result of graphing the above function at a point rather far away from the origin. Specifically, where `y`

is around that crazy big number. Look familiar?

I have a gif collection now. :)

♫ Oh the weather outside is frightful^{1}… ♫

Inspired half by a post on the Code Golf StackExchange and half by the corresponding website allrgb.com, today’s post tasks us with making images like this:

So what’s so interesting about that picture?

Today’s task comes from the Code Golf StackExchange. The idea behind code golf is to write a program with as few characters as possible, often rendering the code nigh on unreadable. Luckily, the same StackExchange also host popularity contests, one of which is the inspiration behind today’s post:

You are given two true color images, the Source and the Palette. They do not necessarily have the same dimensions but it is guaranteed that their areas are the same, i.e. they have the same number of pixels. Your task is to create an algorithm that makes the most accurate looking copy of the Source by only using the pixels in the Palette. Each pixel in the Palette must be used exactly once in a unique position in this copy. The copy must have the same dimensions as the Source. – American Gothic in the palette of Mona Lisa: Rearrange the pixels

Let’s talk about clocks.

We can draw traditional analog clocks^{1}:

We can draw nice digital clocks:

```
┌─┐ │ │ ─┐ ┌─┐
│ │└─┤ │ │ │
└─┘ │ │ ─┴─└─┘
```

Or we can go downright mad and make clocks out of clocks:

Even animated!

It’s been a while^{1}, but I’m back. Today’s post is inspired by a post from /r/dailyprogrammer almost a month ago now: Challenge #183 [Intermediate] Edge Matching Tile Puzzle. Basically, we’re going to solve puzzles like this:

If you look carefully, the tiles are the same between the two, although they might be rotated.

Oops, turns out I haven’t had a post in a good long while. Before it gets even longer, I figure that I should take one off my backlog and just write it up, even if it is a little on the shorter side.

Today’s post was inspired by this post on /r/dailyprogrammer a month ago today: Challenge #178 [Hard] Regular Expression Fractals. The basic idea is that you are going to take a rectangular region and divide it into four quadrants, again and again, recording the path as you go (images from that post):

First we had Procedural Invaders. Then we used them fill up space with Fractal Invaders. But we’re not *quite* done yet! This time, let’s mix things up a bit and make Invader Fractals.