AoC 2017 Day 21: Fractal Expander

Source: Fractal Art

Part 1: Start with an input image made of . and # pixels. For n iterations, break the image into blocks:

  • If the current size is even, break the image into 2x2 chunks and replace each with a 3x3 chunk
  • If the current size is odd, break the image into 3x3 chunks and replace each with a 4x4 chunk

The replacement rules will be specified in the following format (example is a 3x3 -> 4x4 rule):

.#./..#/### => #..#/…./…./#..#


> In that example, replace this:

> ```
.#.
..#
###

With this:

#..# …. …. #..#

read more...


AoC 2017 Day 18: Duetvm

Source: Duet

Part 1: Create a virtual machine with the following instruction set:

  • snd X plays a sound with a frequency equal to the value of X
  • set X Y sets register X to Y
  • add X Y set register X to X + Y
  • mul X Y sets register X to X * Y
  • mod X Y sets register X to X mod Y
  • rcv X recovers the frequency of the last sound played, if X is not zero
  • jgz X Y jumps with an offset of the value of Y, iff X is greater than zero

In most cases, X and Y can be either an integer value or a register.

What is the value recovered by rcv the first time X is non-zero?

read more...


AoC 2017 Day 17: Spinlock

Source: Spinlock1

Part 1: Start with a circular buffer containing [0] and current_position = 0. For n from 1 up to 2017:

  1. Step forward steps (puzzle input)
  2. Input the next value for n, set current_position to n, increment n
  3. Repeat

What is the value after 2017?

It’s a bit weird to describe, but the given example helps (assume steps = 3):

(0)
0 (1)
0 (2) 1
0  2 (3) 1
0  2 (4) 3  1
0 (5) 2  4  3  1
0  5  2  4  3 (6) 1
0  5 (7) 2  4  3  6  1
0  5  7  2  4  3 (8) 6  1
0 (9) 5  7  2  4  3  8  6  1

read more...


AoC 2017 Day 13: Firewall Puncher

Source: Packet Scanners

Part 1: Multiple layers are defined with rules of the form:

  • {index}: {depth}

Each layer will start at position 0, then once per tick will advance towards depth. Once it hits depth-1, it will return to position 0, taking 2*depth-1 per full cycle.

Calculate the sum of index * depth for any scanners that are at position 0 when you pass through them given an initial starting time.

read more...