The earliest memory I have of ‘programming’ is in the early/mid 90s when my father brought home a computer from work. We could play games on it … so of course I took the spreadsheet program he used (LOTUS 123, did I date myself with that?) and tried to modify it to print out a helpful message for him. It … halfway worked? At least I could undo it so he could get back to work…

After that, I picked up programming for real in QBASIC (I still have a few of those programs lying around), got my own (junky) Linux desktop from my cousin, tried to learn VBasic (without a Windows machine), and eventually made it to high school… In college, I studied computer science and mathematics, mostly programming in Java/.NET, although with a bit of everything in the mix. A few of my oldest programming posts on this blog are from that time.

After that, on to grad school! Originally, I was going to study computational linguistics, but that fell through. Then programming languages (the school’s specialty). And finally I ended up studying censorship and computer security. That’s about where I am today!

But really, I still have a habit of doing a little bit of everything. Whatever seems interesting at the time!

Palette Swapping

Today’s task comes from the Code Golf StackExchange. The idea behind code golf is to write a program with as few characters as possible, often rendering the code nigh on unreadable. Luckily, the same StackExchange also host popularity contests, one of which is the inspiration behind today’s post:

You are given two true color images, the Source and the Palette. They do not necessarily have the same dimensions but it is guaranteed that their areas are the same, i.e. they have the same number of pixels. Your task is to create an algorithm that makes the most accurate looking copy of the Source by only using the pixels in the Palette. Each pixel in the Palette must be used exactly once in a unique position in this copy. The copy must have the same dimensions as the Source. – American Gothic in the palette of Mona Lisa: Rearrange the pixels

read more...


Clockception

Let’s talk about clocks.

We can draw traditional analog clocks1:

We can draw nice digital clocks:

┌─┐  │ │ ─┐ ┌─┐
│ │└─┤    │ │ │
└─┘  │ │ ─┴─└─┘

Or we can go downright mad and make clocks out of clocks:

Even animated!

read more...


Regular Expression Fractals

Oops, turns out I haven’t had a post in a good long while. Before it gets even longer, I figure that I should take one off my backlog and just write it up, even if it is a little on the shorter side.

Today’s post was inspired by this post on /r/dailyprogrammer a month ago today: Challenge #178 [Hard] Regular Expression Fractals. The basic idea is that you are going to take a rectangular region and divide it into four quadrants, again and again, recording the path as you go (images from that post):

read more...


Fractal Invaders

Today’s post is a follow up to Sunday’s post Procedural Invaders. This time around, we’re going to work through two different space filling algorithms in order to eventually generate something like this:

read more...


Look and Say

Random quick post today1. Basically, we want to write code to generate what’s known as Look and Say sequence:

To generate a member of the sequence from the previous member, read off the digits of the previous member, counting the number of digits in groups of the same digit. For example:

  • 1 is read off as “one 1” or 11.
  • 11 is read off as “two 1s” or 21.
  • 21 is read off as “one 2, then one 1” or 1211.
  • 1211 is read off as “one 1, then one 2, then two 1s” or 111221.
  • 111221 is read off as “three 1s, then two 2s, then one 1” or 312211.

read more...