Source: The Treachery of Whales
Part 1: Given a list of numbers, find the minimum integer I
such the sum difference of each number and I is minimized.
There is probably a fancy number theory way of doing it to solve directly for I
, but it’s a really quick problem to brute force:
def part1(file: typer.FileText):
positions = [
int(value)
for line in file
for value in line.split(',')
]
fuel, target = min(
(
sum(abs(position - target) for position in positions),
target
)
for target in range(min(positions), max(positions)+1)
)
print(f'{target=}, {fuel=}')
Load in the numbers, calculate every possible target
from minimum to maximum and the sum distance for that value of I
, then return just the minimum such value.
$ python3 brachyura-aligner.py part1 input.txt
target=323, fuel=336040
Quick.
Part 2: Instead of using the distance function |I-n|
, instead use d(1)=1, d(2)=3, d(3)=6
, etc (the triangular numbers).
It actually originally said:
Instead, each change of 1 step in horizontal position costs 1 more unit of fuel than the last: the first step costs 1, the second step costs 2, the third step costs 3, and so on.
That ends up turning into 1, 3, 6, 10, ...
which I recognized as the Triangular numbers. And it turns out there isa direct formula for calculating the nth Triangular number:
def part2(file: typer.FileText):
def t(n):
return n * (n + 1) // 2
positions = [
int(value)
for line in file
for value in line.split(',')
]
fuel, target = min(
(
sum(t(abs(position - target)) for position in positions),
target
)
for target in range(min(positions), max(positions)+1)
)
print(f'{target=}, {fuel=}')
And off we go:
$ python3 brachyura-aligner.py part2 input.txt
target=463, fuel=94813675
It is interesting how that changes the answer, but I expect that’s because distance scale much more quickly, so extremes matter more than in part 1.
Optimization
One optimization that you can notice is that either of these functions still results in a function with a single local minimum (the solution). Let’s show that:
last_score = 0
for target in range(min(positions), max(positions)+1):
score = sum(t(abs(position - target)) for position in positions)
if last_score:
print('=' if score == last_score else ('^' if score > last_score else 'v'), end='')
last_score = score
For each score, we’re going to print ^
if the score is currently rising and v
if it’s falling.
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Swaps right at 463 (as expected). So one optimization would be to start at the low end and wait until it swaps. Another would be to do a binary search, looking for that inversion point. In either case though…
--- Day 7: The Treachery of Whales ---
$ python3 brachyura-aligner.py part1 input.txt
target=323, fuel=336040
# time 140666042ns / 0.14s
$ python3 brachyura-aligner.py part2 input.txt
target=463, fuel=94813675
# time 284611417ns / 0.28s
It doesn’t seem necessary. It’s the slowest problem so far, but by no means slow. After all:
The real problem is that programmers have spent far too much time worrying about efficiency in the wrong places and at the wrong times; premature optimization is the root of all evil (or at least most of it) in programming.
– Donald Knuth, The Art of Computer Programming
😄